

About the JFC and Swing

JFC is short for Java Foundation Classes, which encompass a group of features for building graphical user interfaces (GUIs) and adding rich graphics functionality and interactivity to Java applications. It is defined as containing the features shown in the table below.

	Feature
	Description

	Swing GUI Components
	Includes everything from buttons to split panes to tables. Many components are capable of sorting, printing, and drag and drop, to name a few of the supported features.

	Pluggable Look-and-Feel Support
	The look and feel of Swing applications is pluggable, allowing a choice of look and feel. For example, the same program can use either the Java or the Windows look and feel. Additionally, the Java platform supports the GTK+ look and feel, which makes hundreds of existing look and feels available to Swing programs. Many more look-and-feel packages are available from various sources.

	Accessibility API
	Enables assistive technologies, such as screen readers and Braille displays, to get information from the user interface.

	Java 2D API
	Enables developers to easily incorporate high-quality 2D graphics, text, and images in applications and applets. Java 2D includes extensive APIs for generating and sending high-quality output to printing devices.

	Internationalization
	Allows developers to build applications that can interact with users worldwide in their own languages and cultural conventions. With the input method framework developers can build applications that accept text in languages that use thousands of different characters, such as Japanese, Chinese, or Korean.

Using Top-Level Containers

Swing provides three generally useful top-level container classes: JFrame, JDialog, and JApplet. When using these classes, you should keep these facts in mind:

· To appear onscreen, every GUI component must be part of a containment hierarchy. A containment hierarchy is a tree of components that has a top-level container as its root.

· Each GUI component can be contained only once. If a component is already in a container and you try to add it to another container, the component will be removed from the first container and then added to the second.

· Each top-level container has a content pane that, generally speaking, contains (directly or indirectly) the visible components in that top-level container's GUI.

· You can optionally add a menu bar to a top-level container. The menu bar is by convention positioned within the top-level container, but outside the content pane.
Here's a picture of a frame created by an application. The frame contains a green menu bar (with no menus) and, in the frame's content pane, a large blank, yellow label.
	[image: image1.png]
	[image: image2.png]

Here's the containment hierarchy for this example's GUI:

[image: image3.png]
Top-Level Containers and Containment Hierarchies

Each program that uses Swing components has at least one top-level container. This top-level container is the root of a containment hierarchy — the hierarchy that contains all of the Swing components that appear inside the top-level container.

As a rule, a standalone application with a Swing-based GUI has at least one containment hierarchy with a JFrame as its root. For example, if an application has one main window and two dialogs, then the application has three containment hierarchies, and thus three top-level containers. One containment hierarchy has a JFrame as its root, and each of the other two has a JDialog object as its root.

A Swing-based applet has at least one containment hierarchy, exactly one of which is rooted by a JApplet object. For example, an applet that brings up a dialog has two containment hierarchies. The components in the browser window are in a containment hierarchy rooted by a JApplet object. The dialog has a containment hierarchy rooted by a JDialog object.

The Root Pane

Each top-level container relies on a reclusive intermediate container called the root pane. The root pane manages the content pane and the menu bar, along with a couple of other containers. You generally don't need to know about root panes to use Swing components. However, if you ever need to intercept mouse clicks or paint over multiple components, you should get acquainted with root panes.

Here's a list of the components that a root pane provides to a frame (and to every other top-level container):

[image: image4.png]
Adding Components to the Content Pane

Components are added to Top-level container on to its Content Pane.The Content Pane can be addressed by getContentPane() function of the container. To add a component the add method is called as follows

getContentpane().add(comp);

Adding a Menu Bar

In theory, all top-level containers can hold a menu bar. In practice, however, menu bars usually appear only in frames and applets. To add a menu bar to a top-level container, create a JMenuBar object, populate it with menus, and then call setJMenuBar.

The JComponent Class

With the exception of top-level containers, all Swing components whose names begin with "J" descend from the JComponent class. For example, JPanel, JScrollPane, JButton, and JTable all inherit from JComponent. However, JFrame and JDialog don't because they implement top-level containers.

The JComponent class extends the Container class, which itself extends Component. The Component class includes everything from providing layout hints to supporting painting and events. The Container class has support for adding components to the container and laying them out.

JComponent Features

The JComponent class provides the following functionality to its descendants:

· Tool tips
· Painting and borders
· Application-wide pluggable look and feel
· Custom properties
· Support for layout
· Support for accessibility
· Support for drag and drop
· Double buffering
· Key bindings
Tool tips

By specifying a string with the setToolTipText method, you can provide help to users of a component. When the cursor pauses over the component, the specified string is displayed in a small window that appears near the component.

Painting and borders

The setBorder method allows you to specify the border that a component displays around its edges. To paint the inside of a component, override the paintComponent method.

Application-wide pluggable look and feel

Behind the scenes, each JComponent object has a corresponding ComponentUI object that performs all the drawing, event handling, size determination, and so on for that JComponent. Exactly which ComponentUI object is used depends on the current look and feel, which you can set using the UIManager.setLookAndFeel method.

Support for layout

Although the Component class provides layout hint methods such as getPreferredSize and getAlignmentX, it doesn't provide any way to set these layout hints, short of creating a subclass and overriding the methods. To give you another way to set layout hints, the JComponent class adds setter methods — setMinimumSize, setMaximumSize, setAlignmentX, and setAlignmentY.

Support for accessibility

The JComponent class provides API and basic functionality to help assistive technologies such as screen readers get information from Swing components.

Support for drag and drop

The JComponent class provides API to set a component's transfer handler, which is the basis for Swing's drag and drop support.

Double buffering

Double buffering smoothes on-screen painting.

Key bindings

This feature makes components react when the user presses a key on the keyboard. For example, in many look and feels when a button has the focus, typing the Space key is equivalent to a mouse click on the button. The look and feel automatically sets up the bindings between pressing and releasing the Space key and the resulting effects on the button.

How to Make Frames (Main Windows)

A Frame is a top-level window with a title and a border. The size of the

frame includes any area designated for the border.

A frame, implemented as an instance of the JFrame class, is a window that has decorations such as a border, a title, and supports button components that close or iconify the window. Applications with a GUI usually include at least one frame. Applets sometimes use frames, as well.

Creating and Showing Frames

[image: image5.png]
The following code shows how to create and set up a frame.

//1. Create the frame.
JFrame frame = new JFrame("FrameDemo");

//2. Optional: What happens when the frame closes?
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

//3. Create components and put them in the frame.
//...create emptyLabel...
frame.getContentPane().add(emptyLabel, BorderLayout.CENTER);

//4. Size the frame.
frame.pack();

//5. Show it.
frame.setVisible(true);

Here are some details about the code:

1.The first line of code creates a frame using a constructor that lets you set the frame title. The other frequently used JFrame constructor is the no-argument constructor.

2.Next the code specifies what happens when your user closes the frame. The EXIT_ON_CLOSE operation exits the program when your user closes the frame. This behavior is appropriate for this program because the program has only one frame, and closing the frame makes the program useless.

3.The next bit of code adds a blank label to the frame content pane.

For frames that have menus, you'd typically add the menu bar to the frame here using the setJMenuBar method.

4.The pack method sizes the frame so that all its contents are at or above their preferred sizes. An alternative to pack is to establish a frame size explicitly by calling setSize or setBounds (which also sets the frame location). In general, using pack is preferable to calling setSize, since pack leaves the frame layout manager in charge of the frame size, and layout managers are good at adjusting to platform dependencies and other factors that affect component size.

5. Calling setVisible(true) makes the frame appear onscreen. Sometimes you might see the show method used instead. The two usages are equivalent, but we use setVisible(true) for consistency's sake.

Responding to Window-Closing Events

By default, when the user closes a frame onscreen, the frame is hidden. Although invisible, the frame still exists and the program can make it visible again. If you want different behavior, then you need to either register a window listener that handles window-closing events, or you need to specify default close behavior using the setDefaultCloseOperation method. You can even do both.

The argument to setDefaultCloseOperation must be one of the following values, the first three of which are defined in the WindowConstants interface (implemented by JFrame, JInternalPane, and JDialog):

DO_NOTHING_ON_CLOSE

Do not do anything when the user requests that the window close. Instead, the program should probably use a window listener that performs some other action in its windowClosing method.

HIDE_ON_CLOSE (the default for JDialog and JFrame)

Hide the window when the user closes it. This removes the window from the screen but leaves it displayable.

DISPOSE_ON_CLOSE (the default for JInternalFrame)

Hide and dispose of the window when the user closes it. This removes the window from the screen and frees up any resources used by it.

EXIT_ON_CLOSE (defined in the JFrame class)

Exit the application, using System.exit(0). This is recommended for applications only. If used within an applet, a SecurityException may be thrown.

The Frame API

The following tables list the commonly used JFrame constructors and methods. Other methods you might want to call are defined by the java.awt.Frame, java.awt.Window, and java.awt.Component classes, from which JFrame descends.

The API for using frames falls into these categories:

· Creating and Setting Up a Frame

· Setting the Window Size and Location

· Methods Related to the Root Pane

	Creating and Setting Up a Frame

	Method or Constructor
	Purpose

	JFrame()
JFrame(String)
	Create a frame that is initially invisible. The String argument provides a title for the frame. To make the frame visible, invoke setVisible(true) on it.

	void setDefaultCloseOperation(int)
int getDefaultCloseOperation()
	Set or get the operation that occurs when the user pushes the close button on this frame. Possible choices are:

· DO_NOTHING_ON_CLOSE

· HIDE_ON_CLOSE

· DISPOSE_ON_CLOSE

· EXIT_ON_CLOSE

The first three constants are defined in the WindowConstants interface, which JFrame implements. The EXIT_ON_CLOSE constant is defined in the JFrame class.

	void setIconImage(Image)
Image getIconImage()
(in Frame)
	Set or get the icon that represents the frame. The argument is a java.awt.Image object.

	void setTitle(String)
String getTitle()
(in Frame)
	Set or get the frame title.

	Setting the Window Size and Location

	Method
	Purpose

	void pack()
(in Window)
	Size the window so that all its contents are at or above their preferred sizes.

	void setSize(int, int)
void setSize(Dimension)
Dimension getSize()
(in Component)
	Set or get the total size of the window. The integer arguments to setSize specify the width and height, respectively.

	void setBounds(int, int, int, int)
void setBounds(Rectangle)
Rectangle getBounds()
(in Component)
	Set or get the size and position of the window. For the integer version of setBounds, the window upper left corner is at the x, y location specified by the first two arguments, and has the width and height specified by the last two arguments.

	void setLocation(int, int)
Point getLocation()
(in Component)
	Set or get the location of the upper left corner of the window. The parameters are the x and y values, respectively.

	void setLocationRelativeTo(Component)
(in Window)
	Position the window so that it is centered over the specified component. If the argument is null, the window is centered onscreen. To properly center the window, you should invoke this method after the window size has been set.

	Methods Related to the Root Pane

	Method
	Purpose

	void setContentPane(Container)
Container getContentPane()
	Set or get the frame content pane. The content pane contains the visible GUI components within the frame.

	JRootPane createRootPane()
void setRootPane(JRootPane)
JRootPane getRootPane()
	Create, set, or get the frame root pane. The root pane manages the interior of the frame including the content pane, the glass pane, and so on.

	void setJMenuBar(JMenuBar)
JMenuBar getJMenuBar()
	Set or get the frame menu bar to manage a set of menus for the frame.

	void setGlassPane(Component)
Component getGlassPane()
	Set or get the frame glass pane. You can use the glass pane to intercept mouse events or paint on top of your program GUI.

	void setLayeredPane(JLayeredPane)
JLayeredPane getLayeredPane()
	Set or get the frame layered pane. You can use the frame layered pane to put components on top of or behind other components.

How to Make Dialogs

A Dialog window is an independent sub window meant to carry temporary notice apart from the main Swing Application Window. Most Dialogs present an error message or warning to a user, but Dialogs can present images, directory trees, or just about anything compatible with the main Swing Application that manages them.

For convenience, several Swing component classes can directly instantiate and display dialogs. To create simple, standard dialogs, you use the JOptionPane class. The ProgressMonitor class can put up a dialog that shows the progress of an operation. Two other classes, JColorChooser and JFileChooser, also supply standard dialogs. To bring up a print dialog, you can use the Printing API. To create a custom dialog, use the JDialog class directly.

The code for simple dialogs can be minimal. For example, here is an informational dialog:

[image: image6.png]
Here is the code that creates and shows it:

JOptionPane.showMessageDialog(frame, "Eggs are not supposed to be green.");

JOptionPane Features

Using JOptionPane, you can quickly create and customize several different kinds of dialogs. JOptionPane provides support for laying out standard dialogs, providing icons, specifying the dialog title and text, and customizing the button text. Other features allow you to customize the components the dialog displays and specify where the dialog should appear onscreen.

JOptionPane's icon support lets you easily specify which icon the dialog displays. You can use a custom icon, no icon at all, or any one of four standard JOptionPane icons (question, information, warning, and error). Each look and feel has its own versions of the four standard icons. The following figure shows the icons used in the Java (and Windows) look and feel.

	Icons used by JOptionPane
(Java look and feel)

	[image: image7.png]
	[image: image8.png]
	[image: image9.png]
	[image: image10.png]

	question
	information
	warning
	error

	(Windows look and feel)

	[image: image11.png]
	[image: image12.png]
	[image: image13.png]
	[image: image14.png]

	question
	information
	warning
	error

	
	
	
	

The two most useful showXxxDialog methods are showMessageDialog and showOptionDialog. The showMessageDialog method displays a simple, one-button dialog. The showOptionDialog method displays a customized dialog — it can display a variety of buttons with customized button text, and can contain a standard text message or a collection of components.

showMessageDialog

Displays a modal dialog with one button, which is labeled "OK" (or the localized equivalent). You can easily specify the message, icon, and title that the dialog displays. Here are some examples of using showMessageDialog:

	[image: image15.png]
	//default title and icon

JOptionPane.showMessageDialog(frame,

 "Eggs are not supposed to be green.",

 "Message");

	[image: image16.png]
	//custom title, warning icon

JOptionPane.showMessageDialog(frame,

 "Eggs are not supposed to be green.",

 "Inane warning",

 JOptionPane.WARNING_MESSAGE);

	
	

	[image: image17.png]
	 //custom title, error icon

JOptionPane.showMessageDialog(frame,

 "Eggs are not supposed to be green.",

 "Inane error",

 JOptionPane.ERROR_MESSAGE);

	[image: image18.png]
	//custom title, no icon

JOptionPane.showMessageDialog(frame,

 "Eggs are not supposed to be green.",

 "A plain message",

 JOptionPane.PLAIN_MESSAGE);

	[image: image19.png]
	//custom title, custom icon

JOptionPane.showMessageDialog(frame,

 "Eggs are not supposed to be green.",

 "Inane custom dialog",

 JOptionPane.INFORMATION_MESSAGE,icon)

How to Make Applets

JApplet is a class that enables applets to use Swing components. JApplet is a subclass of java.applet.Applet.

Any applet that contains Swing components must be implemented with a subclass of JApplet.
Features Provided by JApplet

Because JApplet is a top-level Swing container, each Swing applet has a root pane. The most noticeable effects of the root pane's presence are support for adding a menu bar and the need to use a content pane.

As described in Using Top-Level Containers, each top-level container such as a JApplet has a single content pane. The content pane makes Swing applets different from regular applets in the following ways:

· You add components to a Swing applet's content pane, not directly to the applet.

· You set the layout manager on a Swing applet's content pane, not directly on the applet.

· The default layout manager for a Swing applet's content pane is BorderLayout. This differs from the default layout manager for Applet, which is FlowLayout.

· You should not put painting code directly in a JApplet object.

import javax.swing.*;
import javax.swing.border.*;
import java.awt.*;

public class SimpleApplet extends JApplet {
 public void init() {
 JPanel p = new JPanel();
 p.setLayout(new GridLayout(2, 2));
 p.add(new JLabel("Username"));
 p.add(new JTextField());
 p.add(new JLabel("Password"));
 p.add(new JPasswordField());
 Container content = getContentPane();
 content.add(p);
 }
}
[image: image20.png]

Embedding an Applet in an HTML Page

You can deploy a simple applet by using the applet tag.

Eg:

<html>

<applet code="SimpleApplet.class" width="600" height="95">

</applet>

</html>

The JApplet API

The next table lists the interesting methods that JApplet adds to the applet API. They give you access to features provided by the root pane. Other methods you might use are defined by the Component and Applet classes.

	Method
	Purpose

	void setContentPane(Container)
Container getContentPane()
	Set or get the applet's content pane. The content pane contains the applet's visible GUI components and should be opaque.

	void setRootPane(JRootPane)
JRootPane getRootPane()
	Create, set, or get the applet's root pane. The root pane manages the interior of the applet including the content pane, the glass pane, and so on.

	void setJMenuBar(JMenuBar)
JMenuBar getJMenuBar()
	Set or get the applet's menu bar to manage a set of menus for the applet.

	void setGlassPane(Component)
Component getGlassPane()
	Set or get the applet's glass pane. You can use the glass pane to intercept mouse events.

	void setLayeredPane(JLayeredPane)
JLayeredPane getLayeredPane()
	Set or get the applet's layered pane. You can use the applet's layered pane to put components on top of or behind other components.

How to Use Labels

With the JLabel class, you can display unselectable text and images. If you need to create a component that displays a string, an image, or both, you can do so by using or extending JLabel. If the component is interactive and has a certain state, use a button instead of a label.

By specifying HTML code in a label's text, you can give the label various characteristics such as multiple lines, multiple fonts or multiple colors. If the label uses just a single color or font, you can avoid the overhead of HTML processing by using the setForeground or setFont method instead

Note that labels are not opaque by default. If you need to paint the label's background, it is recommended that you turn its opacity property to "true". The following code snippet shows how to do this.

label.setOpaque(true);

The following picture introduces an application that displays three labels. The window is divided into three rows of equal height; the label in each row is as wide as possible.

[image: image21.png]
Below is the code from LabelDemo.java that creates the labels in the previous example.

. . .

label1 = new JLabel("Image and Text",

 icon,

 JLabel.CENTER);

//Set the position of the text, relative to the icon:

label1.setVerticalTextPosition(JLabel.BOTTOM);

label1.setHorizontalTextPosition(JLabel.CENTER);

label2 = new JLabel("Text-Only Label");

label3 = new JLabel(icon);

Often, a label describes another component. When this occurs, you can improve your program's accessibility by using the setLabelFor method to identify the component that the label describes. For example:

amountLabel.setLabelFor(amountField);

The Label API

The following tables list the commonly used JLabel constructors and methods. Other methods you are likely to call are defined by the Component and JComponent classes. They include setFont, setForeground, setBorder, setOpaque, and setBackground.

	Setting or Getting the Label's Contents

	Method or Constructor
	Purpose

	JLabel(Icon)
JLabel(Icon, int)
JLabel(String)
JLabel(String, Icon, int)
JLabel(String, int)
JLabel()
	Creates a JLabel instance, initializing it to have the specified text/image/alignment. The int argument specifies the horizontal alignment of the label's contents within its drawing area. The horizontal alignment must be one of the following constants defined in the SwingConstants interface (which JLabel implements): LEFT, CENTER, RIGHT, LEADING, or TRAILING. For ease of localization, we strongly recommend using LEADING and TRAILING, rather than LEFT and RIGHT.

	void setText(String)
String getText()
	Sets or gets the text displayed by the label. You can use HTML tags to format the text, as described in Using HTML in Swing Components.

	void setIcon(Icon)
Icon getIcon()
	Sets or gets the image displayed by the label.

	void setDisplayedMnemonic(char)
char getDisplayedMnemonic()
	Sets or gets the letter that should look like a keyboard alternative. This is helpful when a label describes a component (such as a text field) that has a keyboard alternative but cannot display it. If the labelFor property is also set (using setLabelFor), then when the user activates the mnemonic, the keyboard focus is transferred to the component specified by the labelFor property.

	void setDisplayedMnemonicIndex(int)
int getDisplayedMnemonicIndex()
	Sets or gets a hint as to which character in the text should be decorated to represent the mnemonic. This is useful when you have two instances of the same character and wish to decorate the second instance. For example, setDisplayedMnemonicIndex(5) decorates the character that is at position 5 (that is, the 6th character in the text). Not all types of look and feel may support this feature.

	void setDisabledIcon(Icon)
Icon getDisabledIcon()
	Sets or gets the image displayed by the label when it is disabled. If you do not specify a disabled image, then the look and feel creates one by manipulating the default image.

	Fine Tuning the Label's Appearance

	Method
	Purpose

	void setHorizontalAlignment(int)
void setVerticalAlignment(int)
int getHorizontalAlignment()
int getVerticalAlignment()
	Sets or gets the area on the label where its contents should be placed. The SwingConstants interface defines five possible values for horizontal alignment: LEFT, CENTER (the default for image-only labels), RIGHT, LEADING (the default for text-only labels), TRAILING. For vertical alignment: TOP, CENTER (the default), and BOTTOM.

	void setHorizontalTextPosition(int)
void setVerticalTextPosition(int)
int getHorizontalTextPosition()
int getVerticalTextPosition()
	Sets or gets the location where the label's text will be placed, relative to the label's image. The SwingConstants interface defines five possible values for horizontal position: LEADING, LEFT, CENTER, RIGHT, and TRAILING (the default). For vertical position: TOP, CENTER (the default), and BOTTOM.

	void setIconTextGap(int)
int getIconTextGap()
	Sets or gets the number of pixels between the label's text and its image.

	Supporting Accessibility

	Method
	Purpose

	void setLabelFor(Component)
Component getLabelFor()
	Sets or gets which component the label describes

How to Use Text Fields

A text field is a basic text control that enables the user to type a small amount of text. When the user indicates that text entry is complete (usually by pressing Enter), the text field fires an action event. If you need to obtain more than one line of input from the user, use a text area.
The following example displays a basic text field and a text area. The text field is editable. The text area is not editable. When the user presses Enter in the text field, the program copies the text field's contents to the text area, and then selects all the text in the text field.

[image: image22.png]
The following code creates and sets up the text field:

textField = new JTextField();

The next line of code registers a TextDemo object as an action listener for the text field.

textField.addActionListener(this);

The actionPerformed method handles action events from the text field:

private final static String newline = "\n";

...

public void actionPerformed(ActionEvent evt) {

 String text = textField.getText();

 textArea.append(text + newline);

 textField.selectAll();

}

Notice the use of JTextField's getText method to retrieve the text currently contained by the text field. The text returned by this method does not include a newline character for the Enter key that fired the action event.

 Because the JTextField class inherits from the JTextComponent class, text fields are very flexible and can be customized almost any way you like

Often text fields are paired with labels that describe the text fields.
The Text Field API

The following tables list the commonly used JTextField constructors and methods. Other methods you are likely to call are defined in the JTextComponent class. You might also invoke methods on a text field inherited from the text field's other ancestors, such as setPreferredSize, setForeground, setBackground, setFont, and so on.

	Setting or Obtaining the Field's Contents

	Method or Constructor
	Purpose

	JTextField()
JTextField(String)
JTextField(String, int)
JTextField(int)
	Creates a text field. When present, the int argument specifies the desired width in columns. The String argument contains the field's initial text.

	void setText(String)
String getText()
(defined in JTextComponent)
	Sets or obtains the text displayed by the text field.

	Fine Tuning the Field's Appearance

	Method
	Purpose

	void setEditable(boolean)
boolean isEditable()
(defined in JTextComponent)
	Sets or indicates whether the user can edit the text in the text field.

	void setColumns(int);
int getColumns()
	Sets or obtains the number of columns displayed by the text field. This is really just a hint for computing the field's preferred width.

	void setHorizontalAlignment(int);
int getHorizontalAlignment()
	Sets or obtains how the text is aligned horizontally within its area. You can use JTextField.LEADING, JTextField.CENTER, and JTextField.TRAILING for arguments.

	Implementing the Field's Functionality

	Method
	Purpose

	void addActionListener(ActionListener)
void removeActionListener(ActionListener)
	Adds or removes an action listener.

	void selectAll()
(defined in JTextComponent)
	Selects all characters in the text field

How to Use Password Fields

The JPasswordField class, a subclass of JTextField, provides specialized text fields for password entry. For security reasons, a password field does not show the characters that the user types. Instead, the field displays a character different from the one typed, such as an asterisk '*'. As another security precaution, a password field stores its value as an array of characters, rather than as a string. Like an ordinary text field, a password field fires an action event when the user indicates that text entry is complete, for example by pressing the Enter button.

Here is a picture of a demo that opens a small window and prompts the user to type in a password.

[image: image23.png]
 The Password Field API

	Commonly Used JPasswordField Constructors and Methods

	Constructor or Method
	Purpose

	JPasswordField()
JPasswordField(String)
JPasswordField(String, int)
JPasswordField(int)
JPasswordField(Document, String, int)
	Creates a password field. When present, the int argument specifies the desired width in columns. The String argument contains the field's initial text. The Document argument provides a custom model for the field.

	char[] getPassword()
	Returns the password as an array of characters.

	void setEchoChar(char)
char getEchoChar()
	Sets or gets the echo character which is displayed instead of the actual characters typed by the user.

	void addActionListener(ActionListener)
void removeActionListener(ActionListener)
(defined in JTextField)
	Adds or removes an action listener.

	void selectAll()
(defined in JTextComponent)
	Selects all characters in the password field.

How to Use Text Areas

The JTextArea class provides a component that displays multiple lines of text and optionally allows the user to edit the text. If you need to obtain only one line of input from the user, you should use a text field. If you want the text area to display its text using multiple fonts or other styles, you should use an editor pane or text pane. If the displayed text has a limited length and is never edited by the user, use a label.

[image: image24.png]
 The following code creates and initializes the text area:

textArea = new JTextArea(5, 20);

JScrollPane scrollPane = new JScrollPane(textArea);

textArea.setEditable(false);

The two arguments to the JTextArea constructor are hints as to the number of rows and columns, respectively, that the text area should display. The scroll pane that contains the text area pays attention to these hints when determining how big the scroll pane should be.

Without the creation of the scroll pane, the text area would not automatically scroll. The JScrollPane constructor shown in the preceding snippet sets up the text area for viewing in a scroll pane, and specifies that the scroll pane's scroll bars should be visible when needed.

Text areas are editable by default. The code setEditable(false) makes the text area uneditable. It is still selectable and the user can copy data from it, but the user cannot change the text area's contents directly.

The following code adds text to the text area. Note that the text system uses the '\n' character internally to represent newlines;

private final static String newline = "\n";

...

textArea.append(text + newline);

Unless the user has moved the caret (insertion point) by clicking or dragging in the text area, the text area automatically scrolls so that the appended text is visible. You can force the text area to scroll to the bottom by moving the caret to the end of the text area after the call to append:

textArea.setCaretPosition(textArea.getDocument().getLength());

Customizing Text Areas

You can customize text areas in several ways. For example, although a given text area can display text in only one font and color, you can set which font and color it uses. This customization option can be performed on any component. You can also determine how the text area wraps lines and the number of characters per tab. Finally, you can use the methods that the JTextArea class inherits from the JTextComponent class to set properties such as the caret, support for dragging, or color selection.

The Text Area API

The following tables list the commonly used JTextArea constructors and methods. Other methods you are likely to call are defined in JTextComponent, and listed in The Text Component API.

You might also invoke methods on a text area that it inherits from its other ancestors, such as setPreferredSize, setForeground, setBackground, setFont, and so on. See The JComponent Class for tables of commonly used inherited methods.

The API for using text areas includes the following categories:

	Setting or Obtaining Contents

	Method or Constructor
	Purpose

	JTextArea()
JTextArea(String)
JTextArea(String, int, int)
JTextArea(int, int)
	Creates a text area. When present, the String argument contains the initial text. The int arguments specify the desired width in columns and height in rows, respectively.

	void setText(String)
String getText()
(defined in JTextComponent)
	Sets or obtains the text displayed by the text area.

	Fine Tuning the Text Area's Appearance

	Method
	Purpose

	void setEditable(boolean)
boolean isEditable()
(defined in JTextComponent)
	Sets or indicates whether the user can edit the text in the text area.

	void setColumns(int);
int getColumns()
	Sets or obtains the number of columns displayed by the text area. This is really just a hint for computing the area's preferred width.

	void setRows(int);
int getRows()
	Sets or obtains the number of rows displayed by the text area. This is a hint for computing the area's preferred height.

	int setTabSize(int)
	Sets the number of characters a tab is equivalent to.

	int setLineWrap(boolean)
	Sets whether lines are wrapped if they are too long to fit within the allocated width. By default this property is false and lines are not wrapped.

	int setWrapStyleWord(boolean)
	Sets whether lines can be wrapped at white space (word boundaries) or at any character. By default this property is false, and lines can be wrapped (if line wrapping is turned on) at any character.

	Implementing the Text Area's Functionality

	Method
	Purpose

	void selectAll()
(defined in JTextComponent)
	Selects all characters in the text area.

	void append(String)
	Adds the specified text to the end of the text area.

	void insert(String, int)
	Inserts the specified text at the specified position.

	void replaceRange(String, int, int)
	Replaces the text between the indicated positions with the specified string.

	int getLineCount()
int getLineOfOffset(int)
int getLineStartOffset(int)
int getLineEndOffset(int)
	Utilities for finding a line number or the position of the beginning or end of the specified line.

How to Use Button

Here is a picture of an application that displays three buttons:

[image: image25.png]
A Swing button can display both text and an image. In ButtonDemo, each button has its text in a different place, relative to its image. The underlined letter in each button's text shows the mnemonic — the keyboard alternative — for each button. In most look and feels, the user can click a button by pressing the Alt key and the mnemonic. For example, Alt-M would click the Middle button in ButtonDemo.

When a button is disabled, the look and feel automatically generates the button's disabled appearance. However, you could provide an image to be substituted for the normal image. For example, you could provide gray versions of the images used in the left and right buttons.

How you implement event handling depends on the type of button you use and how you use it. Generally, you implement an action listener, which is notified every time the user clicks the button. For check boxes you usually use an item listener, which is notified when the check box is selected or deselected.

Below is the code that creates the buttons in the previous example and reacts to button clicks. The bold code is the code that would remain if the buttons had no images.

//In initialization code:

 b1 = new JButton("Disable middle button", leftButtonIcon);

 b1.setVerticalTextPosition(AbstractButton.CENTER);

 b1.setHorizontalTextPosition(AbstractButton.LEADING);
 //aka LEFT, for left- to-right locales

 b1.setMnemonic(KeyEvent.VK_D);

 b1.setActionCommand("disable");

 b2 = new JButton("Middle button", middleButtonIcon);

 b2.setVerticalTextPosition(AbstractButton.BOTTOM);

 b2.setHorizontalTextPosition(AbstractButton.CENTER);

 b2.setMnemonic(KeyEvent.VK_M);

 b3 = new JButton("Enable middle button", rightButtonIcon);

 //Use the default text position of CENTER, TRAILING (RIGHT).

 b3.setMnemonic(KeyEvent.VK_E);

 b3.setActionCommand("enable");

 b3.setEnabled(false);

 //Listen for actions on buttons 1 and 3.

 b1.addActionListener(this);

 b3.addActionListener(this);

 b1.setToolTipText("Click this button to disable "

 + "the middle button.");

 b2.setToolTipText("This middle button does nothing "

 + "when you click it.");

 b3.setToolTipText("Click this button to enable the "

 + "middle button.");

 ... }

public void actionPerformed(ActionEvent e) {

 if ("disable".equals(e.getActionCommand())) {

 b2.setEnabled(false);

 b1.setEnabled(false);

 b3.setEnabled(true);

 } else {

 b2.setEnabled(true);

 b1.setEnabled(true);

 b3.setEnabled(false);

 }

}

How to Use Check Boxes

The JCheckBox class provides support for check box buttons. You can also put check boxes in menus, using the JCheckBoxMenuItem class. Because JCheckBox and JCheckBoxMenuItem inherit from AbstractButton, Swing check boxes have all the usual button characteristics, as discussed earlier in this section. For example, you can specify images to be used in check boxes.

Check boxes are similar to radio buttons but their selection model is different, by convention. Any number of check boxes in a group — none, some, or all — can be selected. A group of radio buttons, on the other hand, can have only one button selected.

Here is a picture of an application that uses four check boxes to customize a cartoon:

[image: image26.png]
A check box generates one item event and one action event per click. Usually, you listen only for item events, since they let you determine whether the click selected or deselected the check box. Below is the code from CheckBoxDemo.java that creates the check boxes in the previous example and reacts to clicks.

//In initialization code:

 chinButton = new JCheckBox("Chin");

 chinButton.setMnemonic(KeyEvent.VK_C);

 chinButton.setSelected(true);

 glassesButton = new JCheckBox("Glasses");

 glassesButton.setMnemonic(KeyEvent.VK_G);

 glassesButton.setSelected(true);

 hairButton = new JCheckBox("Hair");

 hairButton.setMnemonic(KeyEvent.VK_H);

 hairButton.setSelected(true);

 teethButton = new JCheckBox("Teeth");

 teethButton.setMnemonic(KeyEvent.VK_T);

 teethButton.setSelected(true);

 //Register a listener for the check boxes.

 chinButton.addItemListener(this);

 glassesButton.addItemListener(this);

 hairButton.addItemListener(this);

 teethButton.addItemListener(this);

...

public void itemStateChanged(ItemEvent e) {

 ...

 Object source = e.getItemSelectable();

 if (source == chinButton) {

 //...make a note of it...

 } else if (source == glassesButton) {

 //...make a note of it...

 } else if (source == hairButton) {

 //...make a note of it...

 } else if (source == teethButton) {

 //...make a note of it...

 }

 if (e.getStateChange() == ItemEvent.DESELECTED)

 //...make a note of it...

 ...

 updatePicture();

}

How to Use Radio Buttons

Radio buttons are groups of buttons in which, by convention, only one button at a time can be selected. The Swing release supports radio buttons with the JRadioButton and ButtonGroup classes. To put a radio button in a menu, use the JRadioButtonMenuItem class. Other ways of displaying one-of-many choices are combo boxes and lists. Radio buttons look similar to check boxes, but, by convention, check boxes place no limits on how many items can be selected at a time.

Because JRadioButton inherits from AbstractButton, Swing radio buttons have all the usual button characteristics, as discussed earlier in this section. For example, you can specify the image displayed in a radio button.

Here is a picture of an application that uses five radio buttons to let you choose which kind of pet is displayed:

[image: image27.png]
Each time the user clicks a radio button (even if it was already selected), the button fires an action event. One or two item events also occur — one from the button that was just selected, and another from the button that lost the selection (if any). Usually, you handle radio button clicks using an action listener.

Below is the code from RadioButtonDemo.java that creates the radio buttons in the previous example and reacts to clicks.

//In initialization code:

 //Create the radio buttons.

 JRadioButton birdButton = new JRadioButton(birdString);

 birdButton.setMnemonic(KeyEvent.VK_B);

 birdButton.setActionCommand(birdString);

 birdButton.setSelected(true);

 JRadioButton catButton = new JRadioButton(catString);

 catButton.setMnemonic(KeyEvent.VK_C);

 catButton.setActionCommand(catString);

 JRadioButton dogButton = new JRadioButton(dogString);

 dogButton.setMnemonic(KeyEvent.VK_D);

 dogButton.setActionCommand(dogString);

 JRadioButton rabbitButton = new JRadioButton(rabbitString);

 rabbitButton.setMnemonic(KeyEvent.VK_R);

 rabbitButton.setActionCommand(rabbitString);

 JRadioButton pigButton = new JRadioButton(pigString);

 pigButton.setMnemonic(KeyEvent.VK_P);

 pigButton.setActionCommand(pigString);

 //Group the radio buttons.

 ButtonGroup group = new ButtonGroup();

 group.add(birdButton);

 group.add(catButton);

 group.add(dogButton);

 group.add(rabbitButton);

 group.add(pigButton);

 //Register a listener for the radio buttons.

 birdButton.addActionListener(this);

 catButton.addActionListener(this);

 dogButton.addActionListener(this);

 rabbitButton.addActionListener(this);

 pigButton.addActionListener(this);

...

public void actionPerformed(ActionEvent e) {

 picture.setIcon(new ImageIcon("images/"

 + e.getActionCommand()

 + ".gif"));

}

For each group of radio buttons, you need to create a ButtonGroup instance and add each radio button to it. The ButtonGroup takes care of unselecting the previously selected button when the user selects another button in the group.

You should generally initialize a group of radio buttons so that one is selected. However, the API doesn't enforce this rule — a group of radio buttons can have no initial selection. Once the user has made a selection, exactly one button is selected from then on.

The Button API

The following tables list the commonly used button-related API. Other methods you might call, such as setFont and setForeground, are listed in the API tables in The JComponent Class.
	Setting or Getting the Button's Contents

	Method or Constructor
	Purpose

	JButton(Action)
JButton(String, Icon)
JButton(String)
JButton(Icon)
JButton()
	Create a JButton instance, initializing it to have the specified text/image/action.

	void setAction(Action)
Action getAction()
	Set or get the button's properties according to values from the Action instance.

	void setText(String)
String getText()
	Set or get the text displayed by the button. You can use HTML formatting, as described in Using HTML in Swing Components.

	void setIcon(Icon)
Icon getIcon()
	Set or get the image displayed by the button when the button isn't selected or pressed.

	void setDisabledIcon(Icon)
Icon getDisabledIcon()
	Set or get the image displayed by the button when it is disabled. If you do not specify a disabled image, then the look and feel creates one by manipulating the default image.

	void setPressedIcon(Icon)
Icon getPressedIcon()
	Set or get the image displayed by the button when it is being pressed.

	void setSelectedIcon(Icon)
Icon getSelectedIcon()
void setDisabledSelectedIcon(Icon)
Icon getDisabledSelectedIcon()
	Set or get the image displayed by the button when it is selected. If you do not specify a disabled selected image, then the look and feel creates one by manipulating the selected image.

	setRolloverEnabled(boolean)
boolean isRolloverEnabled()
void setRolloverIcon(Icon)
Icon getRolloverIcon()
void setRolloverSelectedIcon(Icon)
Icon getRolloverSelectedIcon()
	Use setRolloverIcon(someIcon) to make the button display the specified icon when the cursor passes over it. The setRolloverSelectedIcon method lets you specify the rollover icon when the button is selected — this is useful for two-state buttons such as toggle buttons. Setting the rollover icon automatically calls setRollover(true), enabling rollover.

	void setHorizontalAlignment(int)
void setVerticalAlignment(int)
int getHorizontalAlignment()
int getVerticalAlignment()
	Set or get where in the button its contents should be placed. The AbstractButton class allows any one of the following values for horizontal alignment: RIGHT, LEFT, CENTER (the default), LEADING, and TRAILING. For vertical alignment: TOP, CENTER (the default), and BOTTOM.

	void setHorizontalTextPosition(int)
void setVerticalTextPosition(int)
int getHorizontalTextPosition()
int getVerticalTextPosition()
	Set or get where the button's text should be placed, relative to the button's image. The AbstractButton class allows any one of the following values for horizontal position: LEFT, CENTER, RIGHT, LEADING, and TRAILING (the default). For vertical position: TOP, CENTER (the default), and BOTTOM.

	void setMargin(Insets)
Insets getMargin()
	Set or get the number of pixels between the button's border and its contents.

	void setFocusPainted(boolean)
boolean isFocusPainted()
	Set or get whether the button should look different when it has the focus.

	void setBorderPainted(boolean)
boolean isBorderPainted()
	Set or get whether the border of the button should be painted.

	void setIconTextGap(int)
int getIconTextGap()
	Set or get the amount of space between the text and the icon displayed in this button.

	Implementing the Button's Functionality

	Method or Constructor
	Purpose

	void setMnemonic(int)
char getMnemonic()
	Set or get the keyboard alternative to clicking the button. One form of the setMnemonic method accepts a character argument; however, the Swing team recommends that you use an int argument instead, specifying a KeyEvent.VK_X constant.

	void setDisplayedMnemonicIndex(int)
int getDisplayedMnemonicIndex()
	Set or get a hint as to which character in the text should be decorated to represent the mnemonic. Note that not all look and feels may support this.

	void setActionCommand(String)
String getActionCommand()
	Set or get the name of the action performed by the button.

	void addActionListener(ActionListener)
ActionListener removeActionListener()
	Add or remove an object that listens for action events fired by the button.

	void addItemListener(ItemListener)
ItemListener removeItemListener()
	Add or remove an object that listens for item events fired by the button.

	void setSelected(boolean)
boolean isSelected()
	Set or get whether the button is selected. Makes sense only for buttons that have on/off state, such as check boxes.

	void doClick()
void doClick(int)
	Programmatically perform a "click". The optional argument specifies the amount of time (in milliseconds) that the button should look pressed.

	Check Box Constructors

	Constructor
	Purpose

	JCheckBox(Action)
JCheckBox(String)
JCheckBox(String, boolean)
JCheckBox(Icon)
JCheckBox(Icon, boolean)
JCheckBox(String, Icon)
JCheckBox(String, Icon, boolean)
JCheckBox()
	Create a JCheckBox instance. The string argument specifies the text, if any, that the check box should display. Similarly, the Icon argument specifies the image that should be used instead of the look and feel's default check box image. Specifying the boolean argument as true initializes the check box to be selected. If the boolean argument is absent or false, then the check box is initially unselected.

	JCheckBoxMenuItem(Action)
JCheckBoxMenuItem(String)
JCheckBoxMenuItem(String, boolean)
JCheckBoxMenuItem(Icon)
JCheckBoxMenuItem(String, Icon)
JCheckBoxMenuItem(String, Icon, boolean)
JCheckBoxMenuItem()
	Create a JCheckBoxMenuItem instance. The arguments are interpreted in the same way as the arguments to the JCheckBox constructors, except that any specified icon is shown in addition to the normal check box icon.

	Radio Button Constructors

	Constructor
	Purpose

	JRadioButton(Action)
JRadioButton(String)
JRadioButton(String, boolean)
JRadioButton(Icon)
JRadioButton(Icon, boolean)
JRadioButton(String, Icon)
JRadioButton(String, Icon, boolean)
JRadioButton()
	Create a JRadioButton instance. The string argument specifies the text, if any, that the radio button should display. Similarly, the Icon argument specifies the image that should be used instead of the look and feel's default radio button image. Specifying the boolean argument as true initializes the radio button to be selected, subject to the approval of the ButtonGroup object. If the boolean argument is absent or false, then the radio button is initially unselected.

	JRadioButtonMenuItem(Action)
JRadioButtonMenuItem(String)
JRadioButtonMenuItem(Icon)
JRadioButtonMenuItem(String, Icon)
JRadioButtonMenuItem()
	Create a JRadioButtonMenuItem instance. The arguments are interpreted in the same way as the arguments to the JRadioButton constructors, except that any specified icon is shown in addition to the normal radio button icon.

How to Use the ButtonGroup Component

The ButtonGroup component manages the selected/unselected state for a set of buttons. For the group, the ButtonGroup instance guarantees that only one button can be selected at a time.

Initially, all buttons managed by a ButtonGroup instance are unselected.

How to Use ButtonGroup Features

You can use ButtonGroup with any set of objects that inherit from AbstractButton. Typically a button group contains instances of JRadioButton, JRadioButtonMenuItem, or JToggleButton. It would not make sense to put an instance of JButton or JMenuItem in a button group because JButton and JMenuItem do not implement the select/deselect button state.

In general, you will typically follow these steps to write code that uses a ButtonGroup component.

· Subclass JFrame

· Declare and configure a set of radio buttons or toggle buttons

· Instantiate a ButtonGroup object

· Call the add method on that buttongroup object in order to add each button to the group.

The ButtonGroup API

	 Commonly Used Button Group Constructors/Methods

	Constructor or Method
	Purpose

	ButtonGroup()
	Create a ButtonGroup instance.

	void add(AbstractButton)
void remove(AbstractButton)
	Add a button to the group, or remove a button from the group.

	public ButtonGroup getGroup()
(in DefaultButtonModel)
	Get the ButtonGroup, if any, that controls a button. For example:
ButtonGroup group = ((DefaultButtonModel)button.getModel()).getGroup();

	public ButtonGroup clearSelection()
	Clears the state of selected buttons in the ButtonGroup. None of the buttons in the ButtonGroup are selected.

How to Use Lists

A JList presents the user with a group of items, displayed in one or more columns, to choose from. Lists can have many items, so they are often put in scroll panes.

In addition to lists, the following Swing components present multiple selectable items to the user: combo boxes, menus, tables, and groups of check boxes or radio buttons. To display hierarchical data, use a tree.

The following figures shows two applications that use lists. This section uses these examples as a basis for the discussions that follow.

	[image: image28.png]
	[image: image29.png]

	ListDialog
(used by ListDialogRunner)
	ListDemo

Creating a Model

There are three ways to create a list model:

· DefaultListModel — everything is pretty much taken care of for you.

· AbstractListModel — you manage the data and invoke the "fire" methods. For this approach, you must subclass AbstractListModel and implement the getSize and getElementAt methods inherited from the

· ListModel interface. ListModel — you manage everything.

Initializing a List

Here is the code that creates and sets up its list:

JList l1;

String[] listData={"English","Hindi","Marathi"};

l1=new JList(listData);

l1.setSelectionMode(ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);

list.setLayoutOrientation(JList.HORIZONTAL_WRAP);

JScrollPane listScroller = new JScrollPane(l1);

listScroller.setPreferredSize(new Dimension(250, 80));

The code passes an array to the list's constructor. The array is filled with strings. If you initialize a list with an array or vector, the constructor implicitly creates a default list model. The default list model is immutable — you cannot add, remove, or replace items in the list. To create a list whose items can be changed individually, set the list's model to an instance of a mutable list model class, such as an instance of DefaultListModel. You can set a list's model when you create the list or by calling the setModel method.

The call to setSelectionMode specifies how many items the user can select, and whether they must be contiguous;

The call to setLayoutOrientation lets the list display its data in multiple columns. The value JList.HORIZONTAL_WRAP specifies that the list should display its items from left to right before wrapping to a new row. Another possible value is JList.VERTICAL_WRAP, which specifies that the data be displayed from top to bottom (as usual) before wrapping to a new column. The following figures show these two wrapping possibilities, together with the default, JList.VERTICAL.
	[image: image30.png]
	[image: image31.png]
	[image: image32.png]

	HORIZONTAL_WRAP
	VERTICAL_WRAP
	VERTICAL

In combination with the call to setLayoutOrientation, invoking setVisibleRowCount(-1) makes the list display the maximum number of items possible in the available space onscreen. Another common use of setVisibleRowCount is to specify to the lists's scroll pane how many rows the list prefers to display.

Selecting Items in a List

A list uses an instance of ListSelectionModel to manage its selection. By default, a list selection model allows any combination of items to be selected at a time. You can specify a different selection mode by calling the setSelectionMode method on the list. The following table describes the three list selection modes:

	Mode
	Description

	SINGLE_SELECTION
[image: image33.png]
	Only one item can be selected at a time. When the user selects an item, any previously selected item is deselected first.

	SINGLE_INTERVAL_SELECTION
[image: image34.png]
	Multiple, contiguous items can be selected. When the user begins a new selection range, any previously selected items are deselected first.

	MULTIPLE_INTERVAL_SELECTION
[image: image35.png]
	The default. Any combination of items can be selected. The user must explicitly deselect items.

No matter which selection mode your list uses, the list fires list selection events whenever the selection changes. You can process these events by adding a list selection listener to the list with the addListSelectionListener method. A list selection listener must implement one method: valueChanged.

Many list selection events can be generated from a single user action such as a mouse click.

JList provides other methods for setting or getting the selection when the selection mode allows more than one item to be selected. If you want, you can listen for events on the list's list selection model rather than on the list itself.

Adding Items to and Removing Items from a List

listModel = new DefaultListModel();

listModel.addElement("Debbie Scott");

listModel.addElement("Scott Hommel");

listModel.addElement("Alan Sommerer");

list = new JList(listModel);

This particular program uses an instance of DefaultListModel, a class provided by Swing. In spite of the class name, a list does not have a DefaultListModel unless your program explicitly makes it so. If DefaultListModel does not suit your needs, you can write a custom list model, which must adhere to the ListModel interface.

The List API

The following tables list the commonly used JList constructors and methods. Other methods you are most likely to invoke on a JList object are those such as setPreferredSize that its superclasses provide.

Much of the operation of a list is managed by other objects. The items in the list are managed by a list model object, the selection is managed by a list selection model object, and most programs put a list in a scroll pane to handle scrolling. For the most part, you do not need to worry about the models because JList creates them as necessary and you interact with them implicitly with JList's convenience methods.

That said, the API for using lists falls into these categories:

	Initializing List Data

	Method or Constructor
	Purpose

	JList(ListModel)
JList(Object[])
JList(Vector)
JList()
	Create a list with the initial list items specified. The second and third constructors implicitly create an immutable ListModel; you should not subsequently modify the passed-in array or Vector.

	void setModel(ListModel)
ListModel getModel()
	Set or get the model that contains the contents of the list.

	void setListData(Object[])
void setListData(Vector)
	Set the items in the list. These methods implicitly create an immutable ListModel.

	Displaying the List

	Method
	Purpose

	void setVisibleRowCount(int)
int getVisibleRowCount()
	Set or get the visibleRowCount property. For a VERTICAL layout orientation, this sets or gets the preferred number of rows to display without requiring scrolling. For the HORIZONTAL_WRAP or VERTICAL_WRAP layout orientations, it defines how the cells wrap.

	void setLayoutOrientation(int)
int getLayoutOrientation()
	Set or get the way list cells are laid out. The possible layout formats are specified by the JList-defined values VERTICAL (a single column of cells; the default), HORIZONTAL_WRAP ("newspaper" style with the content flowing horizontally then vertically), and VERTICAL_WRAP ("newspaper" style with the content flowing vertically then horizontally).

	int getFirstVisibleIndex()
int getLastVisibleIndex()
	Get the index of the first or last visible item.

	void ensureIndexIsVisible(int)
	Scroll so that the specified index is visible within the viewport that this list is in.

	Managing the List's Selection

	Method
	Purpose

	void addListSelectionListener(ListSelectionListener)
	Register to receive notification of selection changes.

	void setSelectedIndex(int)
void setSelectedIndices(int[])
void setSelectedValue(Object, boolean)
void setSelectionInterval(int, int)
	Set the current selection as indicated. Use setSelectionMode to set what ranges of selections are acceptable. The boolean argument specifies whether the list should attempt to scroll itself so that the selected item is visible.

	int getAnchorSelectionIndex()
int getLeadSelectionIndex()
int getSelectedIndex()
int getMinSelectionIndex()
int getMaxSelectionIndex()
int[] getSelectedIndices()
Object getSelectedValue()
Object[] getSelectedValues()
	Get information about the current selection as indicated.

	void setSelectionMode(int)
int getSelectionMode()
	Set or get the selection mode. Acceptable values are: SINGLE_SELECTION, SINGLE_INTERVAL_SELECTION, or MULTIPLE_INTERVAL_SELECTION (the default), which are defined in ListSelectionModel.

	void clearSelection()
boolean isSelectionEmpty()
	Set or get whether any items are selected.

	boolean isSelectedIndex(int)
	Determine whether the specified index is selected.

	Managing List Data

	Class or Method
	Purpose

	int getNextMatch(String, int, javax.swing.text.Position.Bias)
	Given the starting index, search through the list for an item that starts with the specified string and return that index (or -1 if the string is not found). The third argument, which specifies the search direction, can be either Position.Bias.Forward or Position.Bias.Backward. For example, if you have a 6-item list, getNextMatch("Matisse", 5, javax.swing.text.Position.Bias.Forward) searches for the string "Matisse" in the item at index 5, then (if necessary) at index 0, index 1, and so on.

	void setDragEnabled(boolean)
boolean getDragEnabled()
	Set or get the property that determines whether automatic drag handling is enabled. See Drag and Drop and Data Transfer for more details.

How to Use Combo Boxes

A JComboBox, which lets the user choose one of several choices, can have two very different forms. The default form is the uneditable combo box, which features a button and a drop-down list of values. The second form, called the editable combo box, features a text field with a small button abutting it. The user can type a value in the text field or click the button to display a drop-down list. Here's what the two forms of combo boxes look like in the Java look and feel:

	[image: image36.png]
	[image: image37.png]

	[image: image38.png]
	[image: image39.png]

	Uneditable combo box, before (top)
and after the button is clicked
	Editable combo box, before and after
the arrow button is clicked

	
	

Combo boxes require little screen space, and their editable (text field) form is useful for letting the user quickly choose a value without limiting the user to the displayed values. Other components that can display one-of-many choices are groups of radio buttons and lists. Groups of radio buttons are generally the easiest for users to understand, but combo boxes can be more appropriate when space is limited or more than a few choices are available. Lists are not terribly attractive, but they're more appropriate than combo boxes when the number of items is large (say, over 20) or when selecting multiple items might be valid.

Using an Uneditable Combo Box

The application shown here uses an uneditable combo box for choosing a pet picture:

[image: image40.png]
String[] petStrings = { "Bird", "Cat", "Dog", "Rabbit", "Pig" };

//Create the combo box, select item at index 4.

//Indices start at 0, so 4 specifies the pig.

JComboBox petList = new JComboBox(petStrings);

petList.setSelectedIndex(4);

petList.addActionListener(this);

This combo box contains an array of strings, but you could just as easily use icons instead. An editable combo box would also need a custom editor.

The preceding code registers an action listener on the combo box.

No matter which constructor you use, a combo box uses a combo box model to contain and manage the items in its menu. When you initialize a combo box with an array or a vector, the combo box creates a default model object for you.

Handling Events on a Combo Box

Here's the code from ComboBoxDemo.java that registers and implements an action listener on the combo box:

public class ComboBoxDemo ... implements ActionListener {

 . . .

 petList.addActionListener(this) {

 . . .

 public void actionPerformed(ActionEvent e) {

 JComboBox cb = (JComboBox)e.getSource();

 String petName = (String)cb.getSelectedItem();

 updateLabel(petName);

 }

 . . .

}

This action listener gets the newly selected item from the combo box, uses it to compute the name of an image file, and updates a label to display the image. The combo box fires an action event when the user selects an item from the combo box's menu

Combo boxes also generate item events, which are fired when any of the items' selection state changes. Only one item at a time can be selected in a combo box, so when the user makes a new selection the previously selected item becomes unselected. Thus two item events are fired each time the user selects a different item from the menu. If the user chooses the same item, no item events are fired. Use addItemListener to register an item listener on a combo box.

Using an Editable Combo Box

Here's a picture of a demo application that uses an editable combo box to enter a pattern with which to format dates.

[image: image41.png]
The following code, taken from ComboBoxDemo2.java, creates and sets up the combo box:

String[] patternExamples = {

 "dd MMMMM yyyy",

 "dd.MM.yy",

 "MM/dd/yy",

 "yyyy.MM.dd G 'at' hh:mm:ss z",

 "EEE, MMM d, ''yy",

 "h:mm a",

 "H:mm:ss:SSS",

 "K:mm a,z",

 "yyyy.MMMMM.dd GGG hh:mm aaa"

};

. . .

JComboBox patternList = new JComboBox(patternExamples);

patternList.setEditable(true);

patternList.addActionListener(this);

This code is very similar to the previous example, but warrants a few words of explanation. The bold line of code explicitly turns on editing to allow the user to type values in. This is necessary because, by default, a combo box is not editable. This particular example allows editing on the combo box because its menu does not provide all possible date formatting patterns, just shortcuts to frequently used patterns.

An editable combo box fires an action event when the user chooses an item from the menu and when the user types Enter. Note that the menu remains unchanged when the user enters a value into the combo box. If you want, you can easily write an action listener that adds a new item to the combo box's menu each time the user types in a unique value.

The Combo Box API

The following tables list the commonly used JComboBox constructors and methods. Other methods you are most likely to invoke on a JComboBox object are those it inherits from its superclasses, such as setPreferredSize. See The JComponent API for tables of commonly used inherited methods.

The API for using combo boxes falls into two categories:

	Setting or Getting the Items in the Combo Boxes's Menu

	Method
	Purpose

	JComboBox()
JComboBox(ComboBoxModel)
JComboBox(Object[])
JComboBox(Vector)
	Create a combo box with the specified items in its menu. A combo box created with the default constructor has no items in the menu initially. Each of the other constructors initializes the menu from its argument: a model object, an array of objects, or a Vector of objects.

	void addItem(Object)
void insertItemAt(Object, int)
	Add or insert the specified object into the combo box's menu. The insert method places the specified object at the specified index, thus inserting it before the object currently at that index. These methods require that the combo box's data model be an instance of MutableComboBoxModel.

	Object getItemAt(int)
Object getSelectedItem()
	Get an item from the combo box's menu.

	void removeAllItems()
void removeItemAt(int)
void removeItem(Object)
	Remove one or more items from the combo box's menu. These methods require that the combo box's data model be an instance of MutableComboBoxModel.

	int getItemCount()
	Get the number of items in the combo box's menu.

	void setModel(ComboBoxModel)
ComboBoxModel getModel()
	Set or get the data model that provides the items in the combo box's menu.

	void setAction(Action)
Action getAction()
	Set or get the Action associated with the combo box. For further information, see How to Use Actions.

	Customizing the Combo Box's Operation

	Method or Constructor
	Purpose

	void addActionListener(ActionListener)
	Add an action listener to the combo box. The listener's actionPerformed method is called when the user selects an item from the combo box's menu or, in an editable combo box, when the user presses Enter.

	void addItemListener(ItemListener)
	Add an item listener to the combo box. The listener's itemStateChanged method is called when the selection state of any of the combo box's items change.

	void setEditable(boolean)
boolean isEditable()
	Set or get whether the user can type in the combo box.

	void setRenderer(ListCellRenderer)
ListCellRenderer getRenderer()
	Set or get the object responsible for painting the selected item in the combo box. The renderer is used only when the combo box is uneditable. If the combo box is editable, the editor is used to paint the selected item instead.

	void setEditor(ComboBoxEditor)
ComboBoxEditor getEditor()
	Set or get the object responsible for painting and editing the selected item in the combo box. The editor is used only when the combo box is editable. If the combo box is uneditable, the renderer is used to paint the selected item instead.

